ai method success
Who do you blame when AI projects fail? The technology? Your machine learning and data science team? Vendors? The data? Certainly you can put blame on solving the wrong problem with AI, or applying AI when you don’t need AI at all. But what happens when you have a very well-suited application for AI and the project still fails? Sometimes it comes down to a simple approach: don’t take so long.
At a recent Enterprise Data & AI event, a presenter shared that their AI projects take on average 18 to 24 months to go from concept to production. This is just way too long. There are many reasons why AI projects fail and one common reason is that your project is taking too long to go into production. AI projects shouldn’t be taking 18 or 24 months to go from pilot to production. Advocates of best-practices agile methodologies would tell you that’s the old-school “waterfall” way of doing things that’s ripe for all sorts of problems.
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.