As a step toward improving our ability to identify and manage the harmful effects of bias in artificial intelligence (AI) systems, researchers at the National Institute of Standards and Technology (NIST) recommend widening the scope of where we look for the source of these biases — beyond the machine learning processes and data used to train AI software to the broader societal factors that influence how technology is developed.
The recommendation is a core message of a revised NIST publication, Towards a Standard for Identifying and Managing Bias in Artificial Intelligence (NIST Special Publication 1270), which reflects public comments the agency received on its draft version released last summer. As part of a larger effort to support the development of trustworthy and responsible AI, the document offers guidance connected to the AI Risk Management Framework that NIST is developing.
According to NIST’s Reva Schwartz, the main distinction between the draft and final versions of the publication is the new emphasis on how bias manifests itself not only in AI algorithms and the data used to train them, but also in the societal context in which AI systems are used.
Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…
L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
This website uses cookies.