data labelling
The “AI in Short” series is a collection of shorter pieces that supplement my longer articles and provide bite-sized and readily usable information about AI in a modern business. Watch out for more coming soon.
In the age of data-driven decision-making, the need for data labeling has never been greater. Data labeling is an essential part of training, testing, and validating machine learning models. But with the ever-increasing demand for labeled data, business leaders are often faced with the question of “when is it time to scale?” After all, data labeling can be time-consuming and requires careful iteration. Luckily there are a few tell-tale signs that you should consider when deciding if it’s time to scale your workforce or outsource your data labeling needs.
Data wrangling is an essential part of any machine learning project. But if your team is spending too much time manipulating and cleaning raw data before they can even start to label it, then it may be a sign that you need to increase capacity. This could mean bringing in extra resources or outsourcing some or all of your data labeling needs. Outsourcing can help reduce costs by allowing you to pay only for what you need when you need it.
Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…
Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…
L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…
Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…
📡 Objets connectés : des alliés numériques aux risques bien réels Les objets connectés (IoT)…
Identifier les signes d'une cyberattaque La vigilance est essentielle pour repérer rapidement une intrusion. Certains…
This website uses cookies.