ChatGPT

Why ChatGPT and Bing Chat are so good at making things up

A look inside the hallucinating artificial minds of the famous text prediction bots.

Over the past few months, AI chatbots like ChatGPT have captured the world’s attention due to their ability to converse in a human-like way on just about any subject. But they come with a serious drawback: They can present convincing false information easily, making them unreliable sources of factual information and potential sources of defamation.

Why do AI chatbots make things up, and will we ever be able to fully trust their output? We asked several experts and dug into how these AI models work to find the answers.

“Hallucinations”—a loaded term in AI

AI chatbots such as OpenAI’s ChatGPT rely on a type of AI called a « large language model » (LLM) to generate their responses. An LLM is a computer program trained on millions of text sources that can read and generate « natural language » text—language as humans would naturally write or talk. Unfortunately, they can also make mistakes.

In academic literature, AI researchers often call these mistakes « hallucinations. » But that label has grown controversial as the topic becomes mainstream because some people feel it anthropomorphizes AI models (suggesting they have human-like features) or gives them agency (suggesting they can make their own choices) in situations where that should not be implied. The creators of commercial LLMs may also use hallucinations as an excuse to blame the AI model for faulty outputs instead of taking responsibility for the outputs themselves.

Still, generative AI is so new that we need metaphors borrowed from existing ideas to explain these highly technical concepts to the broader public. In this vein, we feel the term « confabulation, » although similarly imperfect, is a better metaphor than « hallucination. » In human psychology, a « confabulation » occurs when someone’s memory has a gap and the brain convincingly fills in the rest without intending to deceive others. ChatGPT does not work like the human brain, but the term « confabulation » arguably serves as a better metaphor because there’s a creative gap-filling principle at work, as we’ll explore below.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

2 jours ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

1 semaine ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

1 semaine ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

2 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

2 semaines ago

This website uses cookies.