According to the US Census Bureau’s survey of 583,000 US companies in 2018, only 2.8% uses machine learning to leverage advantages to their operations. About 8.9% of surveyed use some form of AI such as voice recognition.
You spent weeks if not months training a machine learning model, and finally, it’s moved to production. Now, you should be seeing the benefits of your hard work.
But instead, you notice that model performance is slowly degrading over time. What could cause this?
If not monitored constantly and adequately evaluated for predictive quality degradation, concept drift can kill a machine learning model before its expected retirement date.
Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…
Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…
La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…
En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…
Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…
"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…
This website uses cookies.