Machine learning

Why Do Machine Learning Models Die In Silence?

According to the US Census Bureau’s survey of 583,000 US companies in 2018, only 2.8% uses machine learning to leverage advantages to their operations. About 8.9% of surveyed use some form of AI such as voice recognition.

You spent weeks if not months training a machine learning model, and finally, it’s moved to production. Now, you should be seeing the benefits of your hard work.

But instead, you notice that model performance is slowly degrading over time. What could cause this?

If not monitored constantly and adequately evaluated for predictive quality degradation, concept drift can kill a machine learning model before its expected retirement date.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

1 mois ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

1 mois ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

1 mois ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 mois ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

2 mois ago

LES DIFFÉRENCES ENTRE ISO 27001 ET TISAX®

TISAX® et ISO 27001 sont toutes deux des normes dédiées à la sécurité de l’information. Bien qu’elles aient…

2 mois ago

This website uses cookies.