Machine learning

Why you don’t need big data to train ML

When somebody says artificial intelligence (AI), they most often mean machine learning (ML). To create an ML algorithm, most people think you need to collect a labeled dataset, and the dataset must be huge. This is all true if the goal is to describe the process in one sentence. However, if you understand the process a little better, then big data is not as necessary as it first seems.

Why many people think nothing will work without big data

To begin with, let’s discuss what a dataset and training are. A dataset is a collection of objects that are typically labeled by a human so that the algorithm can understand what it should look for. For example, if we want to find cats in photos, we need a set of pictures with cats and, for each picture, the coordinates of the cat, if it exists.

During training, the algorithm is shown the labeled data with the expectation that it will learn how to predict labels for objects, find universal dependencies and be able to solve the problem on data that it has not seen.

One of the most common challenges in training such algorithms is called overfitting. Overfitting occurs when the algorithm remembers the training dataset but doesn’t learn how to work with data it has never seen.

Let’s take the same example. If our data contains only photos of black cats, then the algorithm can learn the relationship: black with a tail = a cat. But the false dependency is not always so obvious. If there is little data, and the algorithm is strong, it can remember all the data, focusing on uninterpretable noise.

The easiest way to combat overfitting is to collect more data because this helps prevent the algorithm from creating false dependencies, such as only recognizing black cats.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Sécurité des mots de passe : bonnes pratiques pour éviter les failles

Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…

2 jours ago

Ransomware : comment prévenir et réagir face à une attaque

Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…

3 jours ago

Cybersécurité et e-commerce : protéger vos clients et vos ventes

Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…

6 jours ago

Les ransomwares : comprendre et se défendre contre cette menace

Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…

7 jours ago

RGPD et cybersécurité : comment rester conforme en 2025

RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…

1 semaine ago

VPN : un outil indispensable pour protéger vos données

VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…

1 semaine ago

This website uses cookies.