Machine learning

Why you don’t need big data to train ML

When somebody says artificial intelligence (AI), they most often mean machine learning (ML). To create an ML algorithm, most people think you need to collect a labeled dataset, and the dataset must be huge. This is all true if the goal is to describe the process in one sentence. However, if you understand the process a little better, then big data is not as necessary as it first seems.

Why many people think nothing will work without big data

To begin with, let’s discuss what a dataset and training are. A dataset is a collection of objects that are typically labeled by a human so that the algorithm can understand what it should look for. For example, if we want to find cats in photos, we need a set of pictures with cats and, for each picture, the coordinates of the cat, if it exists.

During training, the algorithm is shown the labeled data with the expectation that it will learn how to predict labels for objects, find universal dependencies and be able to solve the problem on data that it has not seen.

One of the most common challenges in training such algorithms is called overfitting. Overfitting occurs when the algorithm remembers the training dataset but doesn’t learn how to work with data it has never seen.

Let’s take the same example. If our data contains only photos of black cats, then the algorithm can learn the relationship: black with a tail = a cat. But the false dependency is not always so obvious. If there is little data, and the algorithm is strong, it can remember all the data, focusing on uninterpretable noise.

The easiest way to combat overfitting is to collect more data because this helps prevent the algorithm from creating false dependencies, such as only recognizing black cats.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

1 mois ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

1 mois ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

1 mois ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

1 mois ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

1 mois ago

LES DIFFÉRENCES ENTRE ISO 27001 ET TISAX®

TISAX® et ISO 27001 sont toutes deux des normes dédiées à la sécurité de l’information. Bien qu’elles aient…

2 mois ago

This website uses cookies.