With the massive growth of machine learning (ML)-backed services, the term MLops has become a regular part of the conversation — and with good reason. Short for “machine learning operations,” MLops refers to a broad set of tools, work functions and best practices to ensure that machine learning models are deployed and maintained in production reliably and efficiently. Its practice is core to production-grade models — ensuring quick deployment, facilitating experiments for improved performance and avoiding model bias or loss in prediction quality. Without it, ML becomes impossible at scale.
With any up-and-coming practice, it’s easy to be confused about what it actually entails. To help out, we’ve listed seven common myths about MLops to avoid, so you can get on track to leverage ML successfully at scale.
ML is an inherently experimental practice. Even after initial launch, it’s necessary to test new hypotheses while fine-tuning signals and parameters. This allows the model to improve in accuracy and performance over time. MLops processes help engineers manage the experimentation process effectively.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.