In this first of a series of posts, I will be describing how to build a machine learning-based fake news detector from scratch. That means I will literally construct a system that learns how to discern reality from lies (reasonably well), using nothing but raw data. And our project will take us all the way from initial setup to deployed solution. Full source code here.
I’m doing this because when you look at the state of tutorials today, machine learning projects for beginners mean copy-pasting some sample code off the Tensorflow website and running it through an overused benchmark dataset.
In these posts, I will describe a viable sequence for carrying a machine learning product through a realistic lifecycle, trying to be as true as possible to the details.
I will go into the nitty-gritty of the technology decisions, down to how I would organize the code repository structure for fast engineering iteration. As I progress through the posts, I will incrementally add code to the repository until at the end I have a fully functional and deployable system.
These posts will cover all of the following:
With that let’s get started!
There’s no easy way to say this: building a fully-fledged ML system is complex. Starting from the very beginning, the process for a functional and useful system contains at least all of the following steps:
Sounds like a lot? It is.
And here’s what the current machine learning tooling/infrastructure landscape looks like (PC to FSDL):
When you couple the inherent complexity of building a machine learning product with the myriad tooling decision points, it’s no surprise that many companies report 87% of their data science projects never making it into production!
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.