The model could uncover quakes that would previously have been dismissed as human-generated vibrations.
Cities are loud places. Traffic, trains, and machinery generate a lot of noise. While it’s a mere inconvenience much of the time, it can become a deadly problem when it comes to detecting earthquakes. That’s because it’s difficult to spot the telltale signal of an approaching earthquake in seismic sensor data amid the general human-generated vibrations typical of bustling cities, known as urban seismic noise.
Researchers from Stanford have found a way to get a clearer signal. They’ve created an algorithm, described in a paper in Science Advances today, that they claim improves the detection capacity of earthquake monitoring networks in cities and other built-up areas. By filtering out urban seismic noise, it can boost the overall signal quality and recover signals that may have previously been too weak to register.
Algorithms trained to sift out urban seismic noise could be of particular use to monitoring stations in and around bustling earthquake-prone cities in South America, Mexico, the Mediterranean, Indonesia, and Japan.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.