Machine learning

A Machine-Learning Model To Generate Extremely Realistic Synthetic Data

Many machine learning tasks require high-quality data, such as assessing damage in a satellite that negatively affects a model’s performance. Datasets can cost millions of dollars to create if useable data exists, and even the best datasets sometimes contain biases that negatively impact a model’s performance.

Many scientists have been working to answer an intriguing question working with synthetic data sampled from a generative model instead of real data. A generative model is a machine-learning model that requires significantly less memory to keep or share than a dataset. The range and quality of generative models have improved dramatically in recent years.

Synthetic data has the ability to get around some of the privacy and usage rights problems that limit how actual data may be distributed. A generative model could potentially be updated to eliminate particular attributes, such as race or gender, to overcome biases in traditional datasets.

New research by MIT Team develops a method for training a machine learning (ML) model that, rather than requiring a dataset, employs a particular form of ML model to generate exceptionally realistic synthetic data that can train another model for downstream vision tasks.

Their findings suggest that a contrastive representation learning model trained solely on synthetic data may develop visual representations comparable to, if not superior to, those learned from actual data.

After a generative model has been trained on actual data, it can generate synthetic data that is indistinguishable from the original. The training method gives the generative model millions of photos containing objects in a specific class (such as vehicles or cats), after which it learns how to generate comparable objects.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Les 7 menaces cyber les plus fréquentes en entreprise

Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…

4 jours ago

Cybersécurité : Vers une montée en compétence des établissements de santé grâce aux exercices de crise

Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…

2 semaines ago

Règlement DORA : implications contractuelles pour les entités financières et les prestataires informatiques

La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…

2 semaines ago

L’IA : opportunité ou menace ? Les DSI de la finance s’interrogent

L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…

2 semaines ago

Telegram menace de quitter la France : le chiffrement de bout en bout en ligne de mire

Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…

2 semaines ago

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le secteur financier

Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…

2 semaines ago

This website uses cookies.