Coding algorithms in R for models written in Stan

Coding algorithms in R for models written in Stan

On top of recommending the excellent autobiography of Stanislaw Ulam, this post is about using the software Stan, but not directly to perform inference, instead to obtain R functions to evaluate a target’s probability density function and its gradient. With which, one can implement custom methods, while still benefiting from the great work of the Stan team on the “modeling language” side. As a proof of concept I have implemented a plain Hamiltonian Monte Carlo sampler for a random effect logistic regression model (taken from a course on Multilevel Models by Germán Rodríguez), a coupling of that HMC algorithm (as in “Unbiased Hamiltonian Monte Carlo with couplings“, see also this very recent article on the topic of coupling HMC), and then upper bounds on the total variation distance between the chain and its limiting distribution, as in “Estimating Convergence of Markov chains with L-Lag Couplings“.

Read more

Soyez le premier à commenter

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée.


*