On top of recommending the excellent autobiography of Stanislaw Ulam, this post is about using the software Stan, but not directly to perform inference, instead to obtain R functions to evaluate a target’s probability density function and its gradient. With which, one can implement custom methods, while still benefiting from the great work of the Stan team on the “modeling language” side. As a proof of concept I have implemented a plain Hamiltonian Monte Carlo sampler for a random effect logistic regression model (taken from a course on Multilevel Models by Germán Rodríguez), a coupling of that HMC algorithm (as in “Unbiased Hamiltonian Monte Carlo with couplings“, see also this very recent article on the topic of coupling HMC), and then upper bounds on the total variation distance between the chain and its limiting distribution, as in “Estimating Convergence of Markov chains with L-Lag Couplings“.
Sécurité des mots de passe : bonnes pratiques pour éviter les failles La sécurité des…
Ransomware : comment prévenir et réagir face à une attaque Le ransomware est l’une des…
Cybersécurité et e-commerce : protéger vos clients et vos ventes En 2025, les sites e-commerce…
Les ransomwares : comprendre et se défendre contre cette menace En 2025, les ransomwares représentent…
RGPD et cybersécurité : comment rester conforme en 2025 Depuis sa mise en application en…
VPN : un outil indispensable pour protéger vos données Le VPN, ou « Virtual Private…
This website uses cookies.