In its latest step towards general-purpose AI systems, DeepMind has proposed XLand, a virtual environment, to formulate new learning algorithms, which control how agent trains and the games on which it trains. XLand was introduced via a paper titled, “Open-Ended Learning Leads to Generally Capable Agents“, in which DeepMind researchers demonstrated a technique to train an agent capable of playing many different games without requiring human interaction data
The repetitive process of trial and error has proven effective in teaching computer systems to play many games, including chess, shogi, Go, and StarCraft II. However, one of the main challenges with reinforcement learning-trained systems is a lack of training data. Systems trained by reinforcement learning are unable to adapt their learned behaviours to new tasks because they are not trained on a broad enough set of tasks.
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.