breast surgery
Imaging plays a phenomenal role in planning for any major breast operation—whether it be from pinpointing the location of a breast tumour to helping a surgeon navigate complex breast anatomy. Radiologists now have access to swarms of imaging data to aid the former, thanks in part due to modern imaging techniques. Nonetheless, it can be time-consuming to process this information before a surgery is planned.
New machine learning technology aims to bring greater efficiency and accuracy to this process. Initial trials suggest that machine learning performs to the same level if not better than a radiologist in detecting cancer, and also shows a higher sensitivity (i.e. a better ability to detect cancer in an individual that actually has cancer). Not only will this provide surgeons with prerequisite knowledge to make smarter treatment decisions but will lead to reduced workloads, a reduced burden on resources, and reduced chance of error.
Clinicians always want to ensure what they do is backed up by strong evidence—one of the reasons why so much time is spent applying traditional statistical ideas to monitor and predict what might happen to patients after their breast surgery operations.
Whilst a relatively new phenomenon, machine learning looks promising as a gamechanger within this field. New trials suggest it predicts five-year mortality after breast cancer operations more accurately than statistical models and have even gone on to suggest it can predict a patient’s chance of developing a complication like lymphoedema (a long-term swelling in the tissues of the body after an operation).
All of this has been down to the creation of a specific type of machine learning dubbed an “artificial neural network”—a type of machine learning modelled after a human brain cell called a neurone.
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.
Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…
Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises Le 5 décembre…
Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…
La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…
Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…
Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…
This website uses cookies.