Machine learning

How to explain the machine learning life cycle to business execs

For data science teams to succeed, business leaders need to understand the importance of MLops, modelops, and the machine learning life cycle. Try these analogies and examples to cut through the jargon.

If you’re a data scientist or you work with machine learning (ML) models, you have tools to label data, technology environments to train models, and a fundamental understanding of MLops and modelops. If you have ML models running in production, you probably use ML monitoring to identify data drift and other model risks.

Data science teams use these essential ML practices and platforms to collaborate on model development, to configure infrastructure, to deploy ML models to different environments, and to maintain models at scale. Others who are seeking to increase the number of models in production, improve the quality of predictions, and reduce the costs in ML model maintenance will likely need these ML life cycle management tools, too.

Unfortunately, explaining these practices and tools to business stakeholders and budget decision-makers isn’t easy. It’s all technical jargon to leaders who want to understand the return on investment and business impact of machine learning and artificial intelligence investments and would prefer staying out of the technical and operational weeds.

Source

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières

Le règlement DORA : un tournant majeur pour la cybersécurité des institutions financières Le 17…

1 jour ago

Cybersécurité des transports urbains : 123 incidents traités par l’ANSSI en cinq ans

L’Agence nationale de la sécurité des systèmes d'information (ANSSI) a publié un rapport sur les…

1 jour ago

Directive NIS 2 : Comprendre les obligations en cybersécurité pour les entreprises européennes

Directive NIS 2 : Comprendre les nouvelles obligations en cybersécurité pour les entreprises européennes La…

3 jours ago

NIS 2 : entre retard politique et pression cybersécuritaire, les entreprises dans le flou

Alors que la directive européenne NIS 2 s’apprête à transformer en profondeur la gouvernance de…

4 jours ago

Quand l’IA devient l’alliée des hackers : le phishing entre dans une nouvelle ère

L'intelligence artificielle (IA) révolutionne le paysage de la cybersécurité, mais pas toujours dans le bon…

5 jours ago

APT36 frappe l’Inde : des cyberattaques furtives infiltrent chemins de fer et énergie

Des chercheurs en cybersécurité ont détecté une intensification des activités du groupe APT36, affilié au…

5 jours ago

This website uses cookies.