MACHINE LEARNING
If you’re a data scientist or you work with machine learning (ML) models, you have tools to label data, technology environments to train models, and a fundamental understanding of MLops and modelops. If you have ML models running in production, you probably use ML monitoring to identify data drift and other model risks.
Data science teams use these essential ML practices and platforms to collaborate on model development, to configure infrastructure, to deploy ML models to different environments, and to maintain models at scale. Others who are seeking to increase the number of models in production, improve the quality of predictions, and reduce the costs in ML model maintenance will likely need these ML life cycle management tools, too.
Unfortunately, explaining these practices and tools to business stakeholders and budget decision-makers isn’t easy. It’s all technical jargon to leaders who want to understand the return on investment and business impact of machine learning and artificial intelligence investments and would prefer staying out of the technical and operational weeds.
Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…
Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…
La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…
En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…
Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…
"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…
This website uses cookies.