Machine learning

Machine Learning Can Assist in Hip Fracture Classification

Researchers found that machine learning can play an important role in hip fracture classification, with algorithms performing better than human clinicians in some cases.

 – A new machine-learning method used to identify and classify hip fractures has demonstrated its ability to outperform human clinicians.

Two convolutional neural networks (CNNs) developed at the University of Bath identified and classified hip fractures from X-rays with a 19 percent greater degree of accuracy and confidence than hospital-based clinicians.

The researchers from Bath’s Centre for Therapeutic Innovation and Institute for Mathematical Innovation and their colleagues from the Royal United Hospitals Trust Bath, North Bristol NHS Trust, and Bristol Medical School, set out to create a new process to assist clinicians in making hip fracture care more efficient.

The team used a total of 3,659 hip X-rays, classified by at least two experts, to train and test the machine-learning neural networks, which achieved an overall accuracy of 92 percent.

Hip fractures are a significant cause of morbidity and mortality in the elderly, creating high health costs and challenges to social care. Classifying a fracture before surgery is critical to assist surgeons in selecting the right interventions to treat the fracture, restore mobility, and improve patient outcomes.

The ability to accurately and quickly classify a fracture is critical. According to the press release, delays to surgery greater than 48 hours can increase the risk of adverse outcomes and mortality.

Depending on the part of the joint it occurs in, fractures are divided into three classes: intracapsular, trochanteric, or subtrochanteric. Some treatments determined by the fracture classification can cost up to 4.5 times as much as others.

Read more

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Panorama des menaces cyber en 2025

Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…

5 jours ago

Risques émergents de l’Intelligence Artificielle

Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…

7 jours ago

Cybersécurité et IA en santé : enjeux stratégiques pour les DSI d’établissements de soins

La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…

7 jours ago

Sécurité des PME : échapper à l’enfer des questionnaires de sécurité

En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…

1 semaine ago

Votre entreprise a été cyberattaquée : pourquoi la technologie seule ne vous sauvera pas

Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…

1 semaine ago

Mieux connaitre vos faiblesses pour mieux vous protéger

"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…

1 semaine ago

This website uses cookies.