A new deep-learning model developed to detect and classify epileptic seizure subjects has higher accuracy and lower computational time than conventional models, new research shows.
– Researchers have developed a convolutional neural network (CNN) model, a type of deep learning model, for classifying epileptic seizures that is designed to provide maximum accuracy and minor computational complexity, according to a study published in Soft Computing.
The researchers developed their algorithm by integrating CNN architecture with a hierarchical attention mechanism, which was expected to enhance the model’s performance. The model comprises three parts: a feature extraction layer, a hierarchical attention layer, and a classification layer.
The model, which also uses a support vector machine (SVM) algorithm, analyzes a feature map obtained from the raw EEG signal and determines whether the EEGs it was taken from are “healthy” or “seizure.”
Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.






