Cybersecurity

The Future of Generative Adversarial Networks in Deepfakes

Excluding ‘traditional’ CGI methods, which date back to the 1970s, there are currently three mainstream AI-based approaches to creating synthetic human faces, only one of which has attained any widespread success or societal impact: autoencoder frameworks (the architecture behind current viral deepfakes); Generative Adversarial Networks (GANs); and Neural Radiance Fields (NeRF).

Of these, NeRF — a late entrant that’s also capable of recreating the entire human form — is at the most rudimentary stage in terms of its facial generation capabilities; GANs can create the most convincing faces, but are still too volatile and ungovernable to easily output realistic video footage; and autoencoder frameworks, which have captivated (and, arguably, menaced) the world, require ‘host’ footage, and are largely confined to the inner areas of the face, which adds the further burden of finding a ‘target’ who closely resembles the ‘injected’ identity.

Last time, we took a look at the challenges facing NeRF as a future contender for the deepfake crown; in the next article, we’ll examine how the most popular current autoencoder-based deepfake approaches work, and whether they can maintain a vanguard position in face replacement.

For now, let’s see where Generative Adversarial Networks, among the most celebrated image synthesis techniques of the last five years, might fit into the future of deepfakes.

Combat Training

During training, a Generative Adversarial Network extracts high-level features from thousands of images in order to develop the capacity to reproduce similar images in the same domain as the dataset (i.e. ‘faces’‘cars’‘churches’, etc.). 

Read more

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.

Veille-cyber

Share
Published by
Veille-cyber

Recent Posts

Bots et IA biaisées : menaces pour la cybersécurité

Bots et IA biaisées : une menace silencieuse pour la cybersécurité des entreprises Introduction Les…

2 jours ago

Cloudflare en Panne

Cloudflare en Panne : Causes Officielles, Impacts et Risques pour les Entreprises  Le 5 décembre…

2 jours ago

Alerte sur le Malware Brickstorm : Une Menace pour les Infrastructures Critiques

Introduction La cybersécurité est aujourd’hui une priorité mondiale. Récemment, la CISA (Cybersecurity and Infrastructure Security…

2 jours ago

Cloud Computing : État de la menace et stratégies de protection

  La transformation numérique face aux nouvelles menaces Le cloud computing s’impose aujourd’hui comme un…

3 jours ago

Attaque DDoS record : Cloudflare face au botnet Aisuru – Une analyse de l’évolution des cybermenaces

Les attaques par déni de service distribué (DDoS) continuent d'évoluer en sophistication et en ampleur,…

3 jours ago

Poèmes Pirates : La Nouvelle Arme Contre Votre IA

Face à l'adoption croissante des technologies d'IA dans les PME, une nouvelle menace cybersécuritaire émerge…

3 jours ago

This website uses cookies.