Intelligence Artificielle

The power of MLOps to scale AI across the enterprise

To say that it’s challenging to achieve AI at scale across the enterprise would be an understatement.

An estimated 54% to 90% of machine learning (ML) models don’t make it into production from initial pilots for reasons ranging from data and algorithm issues, to defining the business case, to getting executive buy-in, to change-management challenges.

In fact, promoting an ML model into production is a significant accomplishment for even the most advanced enterprise that’s staffed with ML and artificial intelligence (AI) specialists and data scientists.

Enterprise DevOps and IT teams have tried modifying legacy IT workflows and tools to increase the odds that a model will be promoted into production, but have met limited success. One of the primary challenges is that ML developers need new process workflows and tools that better fit their iterative approach to coding models, testing and relaunching them.

That’s where MLOps comes in: The strategy emerged as a set of best practices less than a decade ago to address one of the primary roadblocks preventing the enterprise from putting AI into action — the transition from development and training to production environments.

Gartner defines MLOps as a comprehensive process that “aims to streamline the end-to-end development, testing, validation, deployment, operationalization and instantiation of ML models. It supports the release, activation, monitoring, experiment and performance tracking, management, reuse, update, maintenance, version control, risk and compliance management, and governance of ML models.”

Source 

Veille-cyber

Recent Posts

Panorama des menaces cyber en 2025

Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…

6 jours ago

Risques émergents de l’Intelligence Artificielle

Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…

1 semaine ago

Cybersécurité et IA en santé : enjeux stratégiques pour les DSI d’établissements de soins

La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…

1 semaine ago

Sécurité des PME : échapper à l’enfer des questionnaires de sécurité

En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…

2 semaines ago

Votre entreprise a été cyberattaquée : pourquoi la technologie seule ne vous sauvera pas

Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…

2 semaines ago

Mieux connaitre vos faiblesses pour mieux vous protéger

"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…

2 semaines ago

This website uses cookies.