Cybersecurity has undergone massive shifts technology-wise, led by data science. The extraction of security incident patterns or insights from cybersecurity data and building data-driven models on it is the key to making a security system automated and intelligent.
Cybersecurity data science is a phenomenon where the data and analytics acquired from relevant cybersecurity sources suit the data-driven patterns that give more effective security solutions. The concept of cybersecurity data science makes the computing process more actionable and intelligent when compared to traditional ones in cybersecurity. Therefore, an ML-based multi-layered framework for cybersecurity modelling is sought after today.
Today, companies depend more on digitalisation and Internet-of-Things (IoT) after various security issues like unauthorised access, malware attack, zero-day attack, data breach, denial of service (DoS), social engineering or phishing surfaced at a significant rate. Cybercrime causes disastrous and sometimes irreversible financial losses that affect both organisations and individuals. A data breach costs $8.19 million in the United States and $3.9 million on an average, according to an IBM report. Meanwhile, the annual cost for the global economy from cybercrime is $400 billion.
Panorama des menaces cyber en 2025 : Implications pour les entreprises françaises à l'ère de…
Introduction L'adoption croissante des technologies d'intelligence artificielle dans le secteur de la santé offre des…
La révolution IA dans le secteur de la santé : nouveaux défis de cybersécurité La…
En tant que PME sous-traitante de grands groupes, vous connaissez trop bien ce scénario :…
Votre entreprise vient de subir une cyberattaque. Dans le feu de l'action, vous avez mobilisé…
"Mais concrètement, à quoi sert un scanner de vulnérabilité pour une entreprise comme la nôtre?"…
This website uses cookies.