quantum machnine
Quantum physics promises big changes for many fields, including machine learning—in theory, at least. In reality, quantum machine learning is still largely theoretical and has a long way to go before it becomes practical for widespread application.
When and if quantum computers become more feasible and accessible, they will greatly increase the speed of machine learning processing and open a lot of possibilities for new types of machine learning. Therefore, it’s important to understand what quantum machine learning is, how it theoretically works, how it compares to classical machine learning, and what challenges lie in store for the future of quantum ML.
To grasp what quantum machine learning is, we first need to understand machine learning and quantum mechanics separately.
Machine learning (ML) is a subset of artificial intelligence (AI) and computer science that uses data, algorithms, and software to imitate the way that humans learn knowledge over time. On the other hand, quantum computing is a cutting-edge technology field that uses the principles of quantum mechanics to solve problems that are too complicated for classical computers to handle.
Thus, quantum machine learning effectively combines these two fields to create computers that can operate and learn at a scale far beyond that of “ordinary” machine learning
Introduction La cybersécurité est devenue une priorité stratégique pour toutes les entreprises, grandes ou petites.…
Cybersécurité : les établissements de santé renforcent leur défense grâce aux exercices de crise Face…
La transformation numérique du secteur financier n'a pas que du bon : elle augmente aussi…
L'IA : opportunité ou menace ? Les DSI de la finance s'interrogent Alors que l'intelligence…
Telegram envisage de quitter la France : le chiffrement de bout en bout au cœur…
Sécurité des identités : un pilier essentiel pour la conformité au règlement DORA dans le…
This website uses cookies.