Home / Intelligence Artificielle / Why it’s time for “data-centric artificial intelligence

Why it’s time for “data-centric artificial intelligence

Why it’s time for “data-centric artificial intelligence

The last 10 years have brought tremendous growth in artificial intelligence. Consumer internet companies have gathered vast amounts of data, which has been used to train powerful machine learning programs. Machine learning algorithms are widely available for many commercial applications, and some are open source.

Now it’s time to focus on the data that fuels these systems, according to AI pioneer Andrew Ng, SM ’98, the founder of the Google Brain research lab, co-founder of Coursera, and former chief scientist at Baidu.

Ng advocates for “data-centric AI,” which he describes as “the discipline of systematically engineering the data needed to build a successful AI system.”

Mots-clés : cybersécurité, sécurité informatique, protection des données, menaces cybernétiques, veille cyber, analyse de vulnérabilités, sécurité des réseaux, cyberattaques, conformité RGPD, NIS2, DORA, PCIDSS, DEVSECOPS, eSANTE, intelligence artificielle, IA en cybersécurité, apprentissage automatique, deep learning, algorithmes de sécurité, détection des anomalies, systèmes intelligents, automatisation de la sécurité, IA pour la prévention des cyberattaques.