Research in the field of machine learning and AI, now a key technology in practically every industry and company, is far too voluminous for anyone to read it all. This column, Perceptron (previously Deep Science), aims to collect some of the most relevant recent discoveries and papers — particularly in, but not limited to, artificial intelligence — and explain why they matter.
This week in AI, a new study reveals how bias, a common problem in AI systems, can start with the instructions given to the people recruited to annotate data from which AI systems learn to make predictions. The coauthors find that annotators pick up on patterns in the instructions, which condition them to contribute annotations that then become over-represented in the data, biasing the AI system toward these annotations.
Many AI systems today “learn” to make sense of images, videos, text, and audio from examples that have been labeled by annotators. The labels enable the systems to extrapolate the relationships between the examples (e.g., the link between the caption “kitchen sink” and a photo of a kitchen sink) to data the systems haven’t seen before (e.g., photos of kitchen sinks that weren’t included in the data used to “teach” the model).